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ABSTRACT 

This note contains some disconnected minor remarks on number theory. 

I. Let 

(1) Iz l--1, l__</<oo 
be an infinite sequence of numbers on the unit circle. Put 

s(k,n)= ~ z~, A, = l i m s u p  l s(k,n)[ 
j - I  k=oo 

and denote by Bk the upper bound of the numbers Is(k,n)l. If  zj = e e~tj~ 
~ 0 then all the Ak'S are finite and if the continued fraction development of 
has bounded denominators then Ak < ck holds for every k (c, c t , ' "  will denote 

suitable positive absolute constants not necessarily the same at every occurrence). 
In a previous paper [2] I observed that for every choice of the numbers (1), 
lira SUpk = ~Bk---- oo, but stated that I can not prove the same result for Ak. 
I overlooked the fact that it is very easy to show the following 

THEOREM. For every choice of the numbers (1) there are infinitely many 
values of k for which 

(2) A k > c I log k. 

To prove (2) observe that it immediately follows from the classical theorem of 
Dirichlet that if ] Y~I = 1,1 < i < n are any n complex numbers, then there is an 
integer 1 < k < 10" so that (R(z) denotes the real part of  z) 

1 
(3) R(yk) > T '  1 6 i 6 n .  

Apply (3) to the n numbers z , .+l , ' . ' , z ( ,+l) , ,  0 < r < oo. We obtain that there 
is a k < 10 ~ for which there are infinitely many values of r so that 

(4) R ~: z,,+, > ~ - .  
1 = 1  
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(4) immediately implies A k ~_ n/4 ,  thus by k < 10 n (2) follows, and our Theorem 
is proved. 

Perhaps Ak > ck holds for infinitely many values of k*. In this connection I 
would like to mention the following question: Denote by f (n ,c )  the smallest 
integer so that if I z~l > 1, 1 < i < n are any n complex numbers, there always is 
an integer 1 < k < f(n,  c) for which 

I >__c 
t = !  

A very special case of the deep results of Tur in  [8] is that f (n ,  1) = n. R~nyi and 
I [3] obtain some crude upper bounds for f (n ,  c,) if c > 1, but our results are too 
weak to improve (2). 

II. Is it true that to every ~ > 0 there is a k so that for n > no every interval 
(n, n(1 + ~)) contains a power of a prime Pi < Pk? It easily follows from the theorem 
of Dirichlet quoted in I that the answer is negative for every ~ < 1, since the 
above theorem implies that to every ~ > 0 there are infinitely many values of m 
so that all primes Pi --< P~ have a power in the interval (m, m(1 + t/)) and then 
the interval (m(1 + t/), 2m) must be free of these powers. Let us call an increasing 
function g(n) good if to every t / >  0 there are infinitely many values of n so that 
all the primes p~ < g(n) have a power in (n, n(1 + t/)). It easily follows from the 
theorem of Dirichlet and ~(x)<  cx/ logx  that if 

[loglog n • logloglog n)  
(5) g(n) = o ~ ~ g ~ g l o - - ~  n 

then g(n) is good. I leave the straightforward proof to the reader. I can obtain 
no non-trivial upper bound for g(n). 

L e t l < ~ < 2 a n d p u t  

(6) A(n, ct) = ~, '1/  p 

where in ~ '  the summation is extended over all primes p for which n < pa < ,m 
for some integer /~> 1. (5) and ~p<yl /p  =loglog y + 0 ( 1 )  implies that for 
infinitely many n 
(7) A(n, a) > loglogloglog n + 0(1). 

Now we are going to prove 

(8) lim inf A(n, ct) = O. 
B=t:O 

To prove (8) we shall show that to every 8 > 0 there are arbitrarily large values 
of n for which 

(9) A(n, o~) < 5. 

• By a remark of Clunie, we certainly must have c __< 1. Added in proof: Clunie proved 
f(n,c) < g(e) n log n, A k > c k ½ 
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Let k = k(e) be sufficiently large. Consider ~'A(21,~) where in ~ '  the 
summation is extended over those l, 1 < ! < x for which the interval (2 t, ~2 ~) 
does not contain any powers of the primes Pi, 1 < i _< k. Put 

D(~, k) = 1 . 
i = 2 log Pk 

Let ax, "", ak be positive numbers which are such that for every choice of the 
rational numbers rl, ..., r k not all 0, ]~=lria~ is irrational. The classical theorem 
of Kronecker-Weyl states that if we denote by x,, 1 < n < ~ the point in the k 
dimensional unit cube whose coordinates are the fractional parts of n~i, 1 _< i _< k 
then the sequence x, is uniformly distributed in the k dimensional unit cube. 
From this theorem is easily follows that the number of summands in ]~'A(2', a) 
is (1 + o(1))xD(oq k). Thus to prove (9) it will suffice to show that for every 
suffÉciently large x 

£ 

]~ 'A(f, ~z) < -~- D(~, k)x. (lO) 

We evidently have 

'A(f,  ~) = ]~ u(j, x) 
pk<pj~2 x Pj 

where u(j, x) denotes the number of those integers 1 < l < x for which the interval 
(2 t,,t2 ~) contains a power of p j, but does not contain any power of Pt, 1 < i _< k. 
For fixed j we obtain again from the Kroneeker-Weyl theorem 

log(1 + ~) u(j, x) = (1 + o(1))o(~, k) x. 
log pj 

(11) 

Put 

(12) E'A(Y,~)= Z u(j,x)= z~ + Z~ 
pk<p~<_2x Pj 

where in ~ l  Pk < Py < T =  T(k,e) and in ~2 T <  pj < 2 ~. From (11) and (12) 
we have for sufficiently large k 

oo 

O(ot, k)x (13) ]~1<(1+o(1))  D(a,k) l ogO+a)  x ]~ 1/p~logpj<-~- 
j = k + l  

since ~ 1 /pj logpj converges. To estimate ~2 observe that there are [x log2/log p j] 
powers of pj not exceeding 2 ~, thus for every j and x 

(14) u(j, x) < x log 2 / log pj. 

From (14) we have for sufficiently large T =  T(k, epC) 

D(*t,k)x (15) ~2 <xlog2 ~ 1/pf logp~ < - ~  
p;>T 
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(10) follows from (12) (13) and (15). By a refinement of this method one could 
perhaps prove that for infinitely many n 

A(n,  o 0 < c / logloglog n. 

Using the classical result of Hoheisel [6] 

n ( x + x l - ~  - n(x)  > c x l - 8 / l o g  x 

we obtain by a simple computation that for all n 

cl / loglog n < A(n,  ~) < c 2 logloglog n. 

III Sivasankaranarayana, Pillai and Szekeres proved that for 1 < 1 < 16 any 
sequence of l consecutive integers always contains one which is relatively prime 
to the others, but that this is in general not true for l = 17, the integers 2184 
< t < 2200, giving the smallest counter example. Later A. Brauer and Pillai [1] 
proved that for every l > 17 there are l consecutive integers no one of which is 
relatively prime to all the others. 

An integer n is said to have property P if any sequence of consecutive integers 
which contains n also contains an integer which is relatively prime to all the 
others. A well known theorem of Tchebicheff states that there always is a prime 
between m and 2m and from this it easily follows that every prime has property P. 
Some time ago I [5] proved that there are infinitely many composite numbers 
which have property P. Denote in fact by u(n) the least prime factor of n.n clearly 
has property P if there are primes Pl and P2 satisfying 

(16) n - u(n) < Pl < n; n < P2 < n -4- u(n). 

One would expect that it is not difficult to give a simple direct proof that in- 
finitely many composite numbers satisfy (16), but I did not succeed in this. In 
fact I proved that there are infinitely many primes p for which p - 1 satisfies (16) 
but the proof uses the Walfisz-Siegel theorem on primes in arithmetic progressions 
and Brun's method [5]. 

In fact I can prove the following 

TI-mOaEM. The  lower densi ty  et v o f  the integers having proper ty  P exists 

and  is positive. 

We will only give a brief outline of the proof, since it seems certain that the 
density of the integers having property P exists and our method is unsuitable to 
prove this fact; also our proof is probably unnecessarily complicated. 

To prove our Theorem we need two lemmas. 

LEMMA 1. For a su~c i en t l y  smal l  e > O we have ( p 1 =  2 < p2 < ... is the 

sequence  o f  consecutive primes):  
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~,l(Pi+ l -- P~) > clx  

where in ~1 the summation is extended over those Pi+l < x for  which 

(17) e log x < Pi+l - Pi < (1 - e) log x. 

It is easy to prove the Lemma by the methods used in 14] 

LEMMA 2. Put Nk = IIe<k p and let l = al < a2 < ... < a~,(N~) = N k - - 1  be 
the integers relatively prime to Nk. Then for sufficiently large k 

E2(al+l - ai) < Nk/ k ~ 

where in ~,2 the summation is extended over those i's for which a~+ l - a t  > k / 2. 

The Lemma can be deduced from 1.6] without any difficulty. 
Now we can prove our Theorem. It is easy to see that if n does not have property 

P then it is included in a unique maximal interval of consecutive integers no one of 
which is relatively prime to the others. Denote these intervals of consecutive 
integers by I1, I2 "" where/1 are the integers 2184, 2185... 2200. Let I,  be the last 
such interval which contains integers < x. l I I denotes the length of the interval I. 
To prove our Theorem it suffices to show 

(18) IIJl <X(1--C2) 
i = l  

Clearly none of the intervals I j  contain any primes. To prove (18) it will suffice 
to show that for some ca < cI 

(19) •311j[ < (ci - c3)x 

where cl is the constant occuring in Lemma 1 and in ~3 the summation is extended 
over those I j, 1 ~ j < r which are in the intervals (pj, p j+ 1) satisfying (17). 

Let T be sufficiently large and consider in the intervals (17) those integers all 
whose prime factors are at least T. It easily follows from Lemma 1 and the Sieve 
of Eratorthenes that the number of these integers not exceeding x is at least 

(20) (1 + o(1))clx I I  (1 - 1/p)  > c 4 x / l o g T  
p<T 

Further these integers can clearly not be contained in intervals Ij  with I iJl z 7- 
for otherwise they would be relatively prime to all the other integers in Ij. Thus 
to complete the proof of our Theorem we only have to show by (20) that for 
sufficiently large T 

1 (21)  ,lIJl < T c,x/log r 

where in ~,~ the summation is extended over the Ij  in ~3 for which I zJI > r.  
The I j  in ~4 satisfy 
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(22) 

Write 

(23) ~,,lljl 

where in ~ ' )  we have (r = 0,1. . . )  

SOME REMARKS ON NUMBER THEORY 

Z < I l j l  < (1 - e) log x. 

= IE ~g~l t j l  
r 

11 

(24) 2"r< It l__< 2'+1T 

i f 2 " + l T > ( 1 - e ) l o g x ,  then the upper bound in (24)should be replaced by 
(1 - e)log x. Now we show that for sufficiently large T and every r 

(25) V(,)I I I ,-,4 I J 1 < 2x / (2'T) ½. 

From (25) and (23) (21) easily follows for sufficiently large T. Thus to prove 
our Theorem we only have to show (25). The integers in the I j  of  ~ ' )  can not be 
relatively prime to N2,+I.T (Nk is the product of the primes not exceeding k) 
therefore if I j  is in an interval 

(uN2,+, .  T, (U + 1)N2r+l.r ) 

I j  must lie in an interval (ai + uN2,+~.r, ai+ ~ + uNz,÷~.T) where 

1 = a 1 < ... < %(Nz,+l.T ) = N 2 , . + I . T  - -  1 

are the integers relatively prime to N2, .+  ~.T" Since 2 "+ 1T =< (1 -- e) log x, it follows 
from the prime number theorem that N 2 . . . .  r = O(X), hence we easily obtain from 
Lemma 2 for sufficiently large T 

, , ,  ( i x ] )  < + 1 g2.+,.r/(2"Z) '/2 <2x/(2"Z) I/2, 

thus (25) and hence our Theorem is proved. Unfortunately I can not handle the 
I Ij  I > log x and thus can not prove that the density of the integers having property 
P exists. 

COROLLARY. There  are infinitely m a n y  composite integers sat is fying (16). 

By % > 0 there are infinitely many composite integers having property P, 
and if there would be only a finite number of  integers with property (1) then 
for sufficiently large i in the set of integers p~ < t < Pt+i no one would be relatively 
prime to the other, thus only a finite number of  composite integers would have 
property P. This contradiction proves the corollary. 

Let us say that the primes have property P0, the composite integers satisfying 
(16) have property P~. By induction with respect to k we define: An integer n has 
property Pk if it does not have property Pj  for any j < k, but both intervals 
(n, n + u(n)) and (n - u(n), n) contains an integer having one of the properties 
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P j, 0 < j < k. It is easy to see that for every k > 0 the integers having property Pt 
have property P too, and conversely every integer having property P has property 
Pk for some k > 0. 

It is easy to show by induction with respect to k that the integers having 
property Pk have density 0, hence from ~p > 0 we obtain that for every k there are 
infinitely many integers having property Pk. 
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